Atlas of plant and animal histology

Home / The cell / Vesicular trafficking / Lysosomes
Site contents
The cell
Animal tissues
Plant tissues
Animal organs
Plant organs
Histological techniques

The cell. 5. Vesicular trafficking.


In the late 19th century, Metchikoff and coworkers proposed that phagocytosed material is digested in acidic intracellular compartments. Later, these compartments were named as lysosomes, and they have been found in all eukaryotic cells so far. Contrary to endosomes, lysosomes do not contain receptors for mannose-6-phosphate. Their main function is degrading molecules coming from endocytosis (external environment) and autophagocytosis (internal environment). Currently, they are regarded as key players in sensing the metabolic state of the cell.

1. Morphology

Lysosomes are organelles of variable size, from 100 to 150 nm in diameter, with a limiting membrane. , Depending on the physiological activity of the cell, the lysosomal population may account for 5 % of the total cellular volume. The lysosomal pH is about 5, which is optimal for the acid hydrolases activity (that is why these enzymes are named "acid"). The membrane of lysosomes protect the rest of the cytoplasm from this destructive activity. The internal surface of lysosomal membrane is coated with a layer of carbohydrates of about 8 nm in thickness, which is known as "lysosomal glycocalyx". These carbohydrates are part of glycoproteins and glycolipids of the membrane and make a physical barrier that prevents acid hydrolases to be in contact with and degrade de membrane. However, even if lysosomal membrane breaks, the cytosolic pH, about 7.2, would be basic enough to inhibit the activity of acid hydrolases.

There are different types of lysosomes with different l sets of enzymes. Any malfunction of lysosomal enzymes may lead to severe physiological failures because the molecules that should be degraded remain inside the cell as residual molecules. For example, type II glycogenolysis (glycogen storage disease) is due to the lack of beta-glucosidase, which catalyzes the glycogen molecules. It causes glycogen accumulation in the organs of the body, and that could be lethal. Lysosomes are named according to the degradation stage of the molecules they contain: primary lysosomes, secondary lysosomes and residual bodies. Residual bodies contain material that can no longer be degraded. Lysosomes remain in the cytoplasm, or, as we will see later, may fuse with the cell membrane and release their content to the extracellular space.

Lysosomes bear specific transporters in their membranes that allow the degradation end-products, such as amino acids, carbohydrates, and nucleotides, to cross the lysosomal membrane towards the cytosol. Proton pumps (v-ATPase: vacuolar proton pump) are also located in the lysosomal membrane for acidifying the internal environment.

2. Functions


There are three pathways to lysosomes for molecules to be degraded:

a) Lysosomes are the last station for the degradation endocytic pathway. Molecules in this pathway must reach lysosomes via endosomes. Those molecules of the endosomal compartment not recycled to the plasma membrane or sent back to the TGN of the Golgi apparatus, are driven to lysosomes. How lysosomes are originated is controversial. Some authors propose that they are formed by protrusion or maturation from multivesicular bodies / late endosomes, which already contain the acid hydrolases and molecules for degradation. Other authors suggest that lysosomes are independent organelles that receive vesicles from late endosomes, or that there is a direct fusion between late endosomes and lysosomes.

Transmembrane proteins of the plasma membrane are targeted to lysosomes after the ubiquitination of their cytosolic domain. Ubiquitination is the addition of ubiquitin proteins. The ubiquitinated proteins are recognized by the distribution machinery of early endosomes, which does not gather these integral proteins for being included in vesicles shipped to plasma membrane. Ubiquitinated transmembrane proteins are concentrated at endosomal domains where clathrin coats are present. So, ubuquitinated proteins are kept in early endosomes, are later found in multivesicular bodies / late endosomes, and finally in lysosomes, where they are degraded. This mechanism is used for degradation of membrane receptors, adhesion molecules, transporters and channels. Non-ubiquitinated integral proteins arriving at early endosomes are usually included in vesicles back to plasma membrane.

b) Particles entering the cell by phagocytosis follow a distinct pathway. Bacteria, viruses and cellular fragments are engulfed by phagocytosis and form a compartment that develops and becomes a phagosome. Content degradation takes place when phagosome fuses with lysosomes.


c) A third pathway for molecules to get to lysosomes is autophagy. It is a cellular ubiquitous process for degrading cytoplasmic material, organelles and cytosolic molecules. Lysosomes are involved in the different types of autophagy. For example, in macroautophagy, cytoplasmic material is enclosed by membranes of the endoplasmic reticulum, and this new membrane bound compartment, known as macroautophagosome, fuses with lysosomes and the content is broke down.

Acid hydrolase enzymes must be also targeted to lysosomes because they are the degradation machines. In the TGN of the Golgi complex, these enzymes are included in vesicles and are moved to the multivesicular bodies / late endosomes. We already dealt with how acid hydrolases are selected in the TGN (see figure). In the Golgi complex, a phosphate is added to a mannose of the enzyme. Mannose-6-phosphate is recognized by a membrane receptor in the TGN, and the cytosolic domain of the receptor interacts with adaptor proteins, which in turn interact with clathrin that gathers receptor-hydrolase complexes, which are then included in vesicles directed toward multivesicular bodies/late endosomes. There are other proteins needed by lysosomes that do not follow this process. For example, some transmembrane proteins, such as proton pumps, contain an amino acid sequence in the cytosolic domain recognized by adaptors proteins.

Lysosomes have been long regarded as terminal organelles in the vesicular traffic. However, lysosomes are able to release their content by exocytosis. For example in the liver, bilis contains enzymes released by lysosomes. Melanocytes contain melanin granules, which are thought to be similar to lysosomes. These granules release their content into the epidermis and they are picked up by keratinocytes producing the brown color of the skin after being exposed to the Sun. Sperm acrosome contains lytic enzymes which are released by exocytosis for removing oocyte barriers during fertilization. Furthermore, it has been proposed that some substances that can not be degraded more are stored in lysosomes, which eventually fuse with plasma membrane releasing this content outside of the cell. Finally, lysosomes help repairing cell breakages by fusion with other membrane bound organelles and lately with plasma membrane (see Asymmetry and repairing )

Lysosomal related organelles (LRO)

Some cells contain organelles that can be related to lysosomes because of their molecular content and physiological features, or because they just derive from lysosomes. They are jointly known as LRO (lysosomal related organelles), and include melanosomes of melanocytes, lytic granules of T lymphocytes, dense granules of megakaryocytes, lamellar bodies of the lung type II cells, Weibel-Palade bodies from endothelial cells, and granules of osteoclasts.

Home / The cell / Vesicular trafficking / Lysosomas