Atlas of plant and animal histology

Home / The cell / Cell diversity
Site contents
The cell
Cell types
Animal tissues
Plant tissues
Animal organs
Plant organs
Histological techniques
Virtual microscopy

The cell. 1.Introduction


Cells show a great diversity of forms and functions. Because of this, it was not easy to realize that all living organisms are made up of units that shares a common basic structure. Every unit is a cell. The other major issue for the discovering of the cell was the very small size they usually show.

1. Cell size

Cell size is measured in micrometers (µm). One micrometer, or micron, is one thousandth of a millimeter (10-3 mm), and one millionth of a meter (10-6 m). A typical eukaryote cell is between 10 and 30 µm in size. This is true for the cells of a worm and for those of an elephant, but there are many more cells in the elephant. To be aware of how small the cells are, imagine a 1.70 meters tall person which is stretched to equal the height of the Everest, which is about 8500 meters. The stretched giant cells of that person would measure only 1.3 centimeters, i.e., smaller than one euro cent coin (then, it would be a giant made up of a huge amount of euro cent coins).

Cell size
Cell size

However, there are eukaryote cells that have unusual dimensions (Figure 1). They can be very small, such as sperm, whose head may be less than 4 µm in diameter, while others, like the eggs of some birds and reptile, may be larger than 10 centimeters (thousands of microns) in their larger axis, but we must measure only the yolk, since the egg white is not part of the cell. An extreme example is the egg of ostriches. Some cells may have cytoplasmic extensions as long as several meters in length, such as some neurons in the brain of giraffes that innervate the most caudal part of the spinal cord. Smaller than eukaryote cells are prokaryote cells, which are typically around 1 to 2 µm in diameter, and Mycoplasma being the smallest with about 0.5 µm in diameter.

Some cell dimensions
Figure 1. Some examples of cell dimensions.

2. Number

Most living organisms are unicellular, i.e., a single cell. Prokaryotes (bacteria and archaea) are the most abundant unicellular organisms. Unicellular eukaryote species are abundant too. Organisms that can be observed without microscopes are mostly multicellular, i.e., they are made up of many cells. Multicellular organisms are animals, plants, fungi and some algae. In general, larger multicellular organisms contain higher number of cells since they have a similar average cell size. Estimates of the total number of cells in an organism similar in size to humans may range from 1013 (1 followed by 13 zeros) to 1014 (1 followed by 14 zeros). To be aware of these numbers, the total number of cells in the human brain is stimated to be about 86x109 neurons and that of a mouse brain is about 15x109. The most abundant cells of the human body are red blood cells and glial/neuronal cells of the nervous system.

3. Morphology

Cell morphology is typically drawn as rounded, but this is probably the most uncommon shape (except for a few types of cells). Cell morphology in animal tissues is diverse, enormously diverse! It can vary from rounded to star-like, from multi-lobed to filiform. Plant cells also show a wide diversity of forms, which is determined by the cell wall, with cuboidal and columnar shapes being the most common shapes. See some examples in Figure 2.

Cell diversity
Figure 2. Cell shapes. A) Neurons of the cerebral cortex. B) Skeletal muscle cells in longitudinal view. C) Cells of a leaf. Different morphologies can be observed in the parenchyma, lower part, with large and elongated cells, and in the epidermis at the upper part, with small and irregular cells. D) Different cell types in the small intestine. The upper redish cells are epithelial cells, the pale elongated cells at the bottom are smooth muscle cells, and the greenish cells are connective tissue cells.

4. Function

Every living organism needs to perform many functions to maintain its integrity, growth and proliferation, which are carried out by many cell types working coordinately. These functions are extremely complex and diverse, from those related to food digestion, detoxification, movement, reproduction, support, defense against pathogens, to those related to thinking, emotions or consciousness. All these functions are carried out by specialized cells, such as those of the gastrointestinal epithelium, liver, muscle, germ cells, bone, lymphocytes and neurons, respectively. Cells need a particular molecular framework, mainly based on proteins, to carry out their functions. In an organism, some functions can be carried out by only one cell type, but it commoly requires the cooperation of several cell types acting in a coordinated manner.

Home / The cell / Cell diversity