Atlas de histología vegetal y animal
Inicio » La célula » Ampliaciones » Apoptosis
La célula. Ampliaciones

APOPTOSIS

La apoptosis es un mecanismo molecular que se produce en el interior de las células eucariotas y cuya finalidad es la muerte de la propia célula. Es un suicidio celular en el que se pone en marcha un programa molecular de autodestrucción desencadenado por señales externas o internas. La apoptosis también se llama muerte celular programada porque los pasos para la degeneración celular están establecidos, pero eso no quiere decir que la célula esté predeterminada a morir, es decir no habrá apoptosis si no hay señal que la inicie.

El papel de la apoptosis es importante en muchos procesos fisiológicos, y también patológicos, de los organismos pluricelulares. Por ejemplo, para la morfogénesis de órganos y tejidos durante desarrollo embrionario, en el mantenimiento y regeneración de los tejidos en el animal adulto, en la respuesta a patógenos o a estrés celular y en patologías como el cáncer. La cantidad de células que mueren por apoptosis es enorme, tanto durante el desarrollo embrionario como en animales adultos durante la renovación celular que ocurre en tejidos como la sangre o el epitelio del digestivo de organismos adultos.

Mecanismos moleculares

El proceso molecular de la apoptosis se ha conservado evolutivamente en las diferentes especies. Es un mecanismo ordenado y dependiente de energía que necesita ser iniciado. Se conocen varias causas que disparan la apoptosis: señales externas mediadas por receptores de muerte, señales internas donde las mitocondrias juegan un papel importante y hay una tercera vía que involucra a las proteínas perforina y granzima. Estas tres vías convergen en un proceso molecular mediado por las enzimas caspasas.

Las caspasas son enzimas proteolíticas que se sintetizan y se liberan en el citosol en forma de procaspasas, las cuales son las formas inactivas. Ellas son las principales encargadas de degradar el interior celular que lleva a la muerte celular. Hay varios tipos de caspasas, cada uno de ellos especializado en actuar sobre diferentes tipos de proteínas. Todas las caspasas rompen cadenas de aminoácidos en lugares donde se encuentra el aminoácido aspartato, pero distintas caspasas actúan sobre diferentes proteínas dependiendo de los aminoácidos que haya próximos a dicho aspartato. Las caspasas que se activan inicialmente son la caspasa-2, 8, 9 y 10, mientras que las efectoras o ejecturas son las caspasas-3, 6 y 7. Hay otas caspasas que realizan papeles más específicos y otras como la caspasa 14 que sólo se expresa durante el desarrollo embrionario.Dentro de las caspasas ejecutoras, la caspasa-3 es considerada muy importante puesto que activa a la endonucleasa CAD, la cual degrada la cromatina. También afecta a la reorganziación del citoesqueleto y como consecuencia provoca la rotura de la célula en fragmentos celulares independientes.

Apoptosis
Principales vías de iniciación de la apoptosis. Los signos de interrogación indican vías que podrín también ser activas.

Una vez que se produce la activación de las primeras caspasas, el proceso de muerte celular parece irreversible, aunque no siempre es así (ver más abajo). Es un mecanismo en cascada en el cual las primeras caspasas activas pueden a su vez activar a otras caspasas, dándose una reacción en cadena y exponencial. Finalmente las caspasas ejecutoras degradarán la célula. Curiosamente las caspasas también actúan en procesos no apoptóticos como la separación de las espermátidas, la diferenciación de los macrófagos, la cornificación del epitelio, eritropoyesis o la diferenciación de las células de las lentes del ojo.

Señales externas. Receptores de muerte. La vía de iniciación extrínseca de la apoptosis comienza con la activación de receptores localizados en la membrana plasmática. A estos receptores se les denomina receptores de muerte y son miembros de la familia de receptores conocidos como TNF (tumor necrosis factors). Cada receptor se activa con una señal característica. Por ejemplo, si emparejamos ligando/receptor tenemos a FasL/FasR, TNF-α/TNFR1, Apo3L/DR3, Apo2L/DR4, o Apo2L/DR5. La llegada del ligando o señal provoca la asociación de receptores activados en la superficie de la membrana y esto dispara un reclutamiento de proteínas adaptadoras en el interior celular. Estas proteínas adaptadoras se asocian entonces con procaspasas-8 creando un ambiente molecular que lleva al cambio conformacional en las procaspasas, desencadenando la autoproteolisis de éstas y la conversión de procaspasas en caspasas. Cuando se produce esta activación el proceso molecular degradativo está activado.

Señales internas. Estrés celular / mitocondrias. Esta vía conlleva la aparición de una serie de estímulos para la apoptosis que no están mediados directamente por receptores. Estos estímulos pueden ser por desaparición o por aumento. Por ejemplo, la desaparición de los factores de supervivencia disparan la apoptosis, pero también lo hace un aumento sobre la células de la radiación, temperatura, sustancias tóxicas, etcétera. Todos estos cambios terminan por alterar la membrana interna mitocondrial que provoca la apertura de poros en su membrana, alterándose el potencial eléctrico y se produciéndose la liberación de diversas moléculas proapoptóticas. Entre éstas está el citocromo C, el cual se unirá a las moléculas apaf-1 y a la procaspasa-9, formando lo que se denomina un apoptosoma. Este complejo provoca la activación de la procaspasa-9 y el inicio del proceso degradativo. Desde la mitocondria se liberan también enzimas en etapas más tardías del proceso apoptótico que se dirigen al núcleo y provocan una primera digestión del ADN. En la membrana de las mitocondrias hay una familia de proteínas denominadas bcl que pueden modular, disparar o inhibir, este mecanismo de inicio de la apoptosis y son potenciales diana para eliminar selectivamente células tumorales.

Perforina/granzima. Los linfocitos T citotóxicos son capaces de matar a células que contienen patógenos mediante la activación de los receptores de muerte y disparar el proceso apoptótico. Sin embargo, existe otra vía mediante la cual crean inicialmente un poro en la membrana e introducen una molécula que activarán la vía apoptótica en el propio citosol. Los linfocitos T citotóxicos poseen unos gránulos que contienen dos tipos tipos de proteínas: las perforinas y las granzimas. El contenido de estos gránulos es exocitado cuando el linfocito detecta la presencia de una célula infectada o cuando la reconoce como tumoral. La perforina se insertará en la membrana de la célula diana y creará un poro por el cual entrarán en el citoplasma las granzimas. La granzima (hay dos tipos, A y B) activará a las caspasas-10 y 3 y también estimulará a la mitocondria para que se inicie el proceso apoptótico como si de una señal interna se tratara.

Procesos celulares: apoptosis / necrosis

Los cambios celulares que se producen durante la apoptosis son diversos: una retracción o encogimiento de la célula, el citoplasma se vuelve más denso y los orgánulos más empaquetados, se observa condensación de la cromatina, lo cual es un indicio visible en preparaciones histológicas convencionales. Posteriormente hay protusiones y plegamientos de la membrana de modo que la célula se divide en porciones independientes denominados cuerpos apoptóticos, pero siempre rodeadas por membrana plasmática. Estas porciones celulares son posteriormente fagocitadas por macrófagos. Puesto que no hay liberación de sustancias intracelulares al medio extracelular por roturas de la membrana no se dan procesos inflamatorios. Además, los macrófagos que eliminan a los cuerpos apoptóticos no liberan citoquinas al medio. La apoptosis es un proceso de muerte celular sin molestar a las células vecinas. Si embargo, se sabe que en algunos casos son capaces de liberar moléculas que favorecen la proliferación celular, la reorganización del la matriz extracelular o del citoesqueleto en células vecinas.

La carencia de efecto inflamatorio de los cuerpos apoptóticos es debida a que son rápidamente eliminados por los macrófagos. Si la actividad macrofágica es inhibida los cuerpos apoptóticos terminan por romperse y desecadenan respuestas inflamatorias. El reconocimiento de las porciones de citoplasmas apoptóticos por parte de los macrofagos se debe a que durante la apoptosis la célula expresa en su superficie marcadores que serán reconocidos específicamente. Esto se consigue, entre otras cosas, por el movimiento de la fosfatidilserina, que normalmente se encuentra en la monocapa interna de la membrana, hacia la monocapa externa. Este lípido es una señal para los macrofágos. También cooperan en el reconocimiento la incorporación a la membrana de la anexina I y de la calreticulina.

Se ha considerado que la apoptosis es un proceso irreversible una vez que se han activado las primeras caspasas. Sin embargo, se ha encontrado que al inactivar los macrófagos algunas células destinadas a morir por apoptosis pueden recuperarse. De manera que la acción de los macrófagos es asegurarse de que una vez que se inicia la apoptosis las célula va realmente a morir.

Por otra parte, la necrosis es una muerte celular debida normalmente a daños celulares producidos por agentes externos tales como temperatura, presión, tóxicos, etcétera. La diferencia con la apoptosis es que la necrosis es un proceso descontrolado y pasivo que conlleva la rotura de la membrana plasmática y liberación del contenido celular desencadenando procesos inflamatorios. Todavía existe un tercer tipo diferente de muerte celular que está mediada por procesos de autofagia. La muerte por autofagia también se considera que es un mecanismo controlado por la célula.

Durante el desarrollo

Durante el desarrollo de C. elegans se generan 1090 células somáticas, de las cuales morirán 131 en lugares y en momentos concretos. Este patrón de producción de un exceso de células que luego serán eliminadas se observa en todas las especies. Aparentemente es un derroche de energía, pero las apariencias engañan.

Morfogénesis. Quizá el ejemplo clásico de la participación de la apoptosis en la morfogénesis de un órgano durante el desarrollo embrionario es la eliminación de las membranas interdigitales. Los dedos de las extremidades están inicialmente conectados por masas celulares que luego serán eliminadas, resultando en la forma final de los dedos. Sin embargo, los patos y otras aves acuáticas poseen membranas entre sus dedos que les permiten impulsarse en el agua. En estas especies la apoptosis es muy escasa entre los dedos. La muerte celular en las especies con dedos separados tiene un efecto como esculpir una estructura para darle una forma final. Otro ejemplo claro ocurre durante la metamorfosis de muchas especies, particularmente en anfibios, en los cuales la apotosis participa en la reorganización del cerebro y del digestivo, así como en la eliminación de la cola.

A veces la muerte celular de ciertas poblaciones celulares durante el desarrollo favorece la liberación de tensiones mecánicas que permiten el plegamiento o cambio de forma de estructuras embrionarias. Parece ser que esto ocurre durante el cierre del tubo neuronal de mamíferos donde gracias a la apoptosis se acelera su cierre. La formación de la cavidad proamniótica en los embriones de mamíferos es resultado de procesos apoptóticos en el centro de la masa de células internas tras el implante del embrión. A este proceso se le denomina cavitación.

Tamaño de estructuras. El tamaño de los órganos es un balance entre proliferación y muerte celular producida durante el desarrollo o en estado adulto. Existen genes relacionados con la proliferación, particularmente los de la vía Hippo que inhiben los procesos apoptóticos. Normalmente estos genes están implicados en cascadas de señalización que cuando no se activan se favorecen los procesos apoptóticos y por lo tanto la eliminación de células del órgano.

Ajuste fino de la función. Está demostrado matemáticamente que es menos costoso en términos de información sobreproducir inicialmente elementos de una estructura tosca y luego eliminar los excesos para obtener una forma final funcionalmente más precisa. Esto es claro en el sistema nervioso donde establecer las conexiones iniciales de forma precisa requeriría una cantidad de información impresionante, pero mucho menos si primero se establecen las conexiones entre neuronas de una manera poco fina y luego se eliminan las células que establecieron conexiones incorrectas. Mueren aquellas neuronas que no hayan sido capaces de establecer conexiones funcionales. De la misma forma, hacer reordenaciones aleatorias para producir muchos linfocitos y luego eliminar a aquellos que produzcan reacciones autoinmunes es más barato, unos 60 genes, que los 100000 genes que serían necesarios para producir cada uno de las líneas de linfocitos. Este proceso de economía se puede aplicar también a procesos de morfogénesis y regionalización.

Homeostasis de tejidos

La apoptosis en animales adultos sirve para contrarrestar las proliferación por mitosis que ocurre en muchos tejidos. Es un proceso continuo de muerte celular y reemplazo por células nuevas. La eliminación de las células apoptóticas la hacen los macrófagos. En la mayoría de los tejidos hay aproximadamente un 15 % de las células que son macrófagos. Este equilibrio entre proliferación y eliminación celular evidente en los epitelios, donde hay una renovación constante de las células y un balance entre nacimiento y muerte celular. Por ejemplo, la queratinización de la epidermis es un proceso apoptótico especializado. También el ciclo de vida de los enterocitos del intestino comienza con la proliferación en las criptas de la mucosa intestinal, el desplazamiento de los enterocitos hacia las zonas más superificiales y su muerte por apoptosis en las vellosidades intestinales. Esto ocurre también los epitelios de las vías respiratorias. Esto es interesante en células que están expuestas a agentes potencialmente patógenos o tóxicos y es más rentable su renovación que favorecer su resistencia y reparación a tales agentes. El balance entre proliferación celular y apoptosis es importante también en la sangre. Esta regulación empieza al nivel de las células madre hematopoyéticas, donde su población es regulada por apoptosis, y por tanto se controla la cantidad de células sanguíneas producidas. Incluso las plaquetas pueden ser reguladas por apoptosis. Las plaquetas son un ejemplo de apoptosis en estructuras no nucleadas.

La apoptosis es un proceso normal durante la respuesta inmune. Los linfocitos T citolíticos emplean perforina y granzima B para eliminar a las células infectadas. La granzima B activa directamente las caspasas, pero también en otras vías como la activación de una molécula denominada Bid que actúa sobre la mitocondria favoreciendo la salida de citocromo C y activando la vía interna de la apoptosis. Pero además, La apoptosis juega un papel importante mediante la eliminación de los linfocitos B y T una vez que la respuesta inmune ha terminado. Esta acción está mediada por Bcl-2 y por la activadad antigénica. Se ha propuesto que las células altamente estimuladas por los antígenos, es decir que han desarrollado anticuerpos contra ellos, disminuyen disminuyen la influencia de Bcl-2 y aumentan la de los receptores de muerte de manera que son células más sensibles a sufrir apoptosis.

Hay numerosas causas que hacen estresarse a una célula, lo que puede provocar un descontrol y mal funcionamiento de esta. Entre estas causas están daños en el ADN, fallos en la división celular, producción y acumulación de proteínas aberrantes, aumento de especies moleculares reactivas o infección por patógenos. Todas ellas, si alcanzan una determinada intensidad, disparan los procesos apoptóticos.

El cáncer es un claro ejemplo donde la apotosis juega un papel importante. Más concretamente, la inhibición de ésta favorece la proliferación y progresión del cáncer. La resistencia de las células tumorales a la apoptosis se da por mutaciones que afectan a genes proapoptóticos. Por ejemplo, alteraciones en los receptores FAS, disminución de su producción o síntesis de receptores defectuosos, de manera que no pueden ser reconocidos por los linfocitos citotóxicos, o disminución de la expresión de los genes bcl-2 proapoptóticos,

Durante el envejecimiento hay una alteración de la apoptosis en diferentes tejidos. Mientras en unos hay un aumento en otros hay una disminución. Por ejemplo, hay un aumento de la apoptosis en el sistema inmune, en el músculo esquelético, en el músculo cardiaco y en enfermedades neurodegenerativas, mientras que por otra parte las células cancerosas y las senescentes son resistentes a morir por apoptosis, favoreciendo su aumento durante el envejecimiento.

Bibliografía

Elmore S. 2007. Apoptosis: A Review of Programmed Cell Death. Toxicology and pathology. 35:495-516.

Henson PM, Hume DA. 2006. Apoptotic cell removal in development and tissue homeostasis. Trends in immunology. 27:444-250.

Suzane M, Steller H. 2013. Shaping organisms with apoptosis. Cell death and differentiation. 20:669-675.

Inicio » La célula » Ampliaciones » Apoptosis
Actualizado: 24-05-2015